Easy Setup - Docker
It is highly recommended to check out the Midori AI Subsystem Manager for setting up LocalAI. It does all of this for you!
- You will need about 10gb of RAM Free
- You will need about 15gb of space free on C drive for
Docker compose
We are going to run LocalAI
with docker compose
for this set up.
Lets setup our folders for LocalAI
(run these to make the folders for you if you wish)
mkdir "LocalAI"
cd LocalAI
mkdir "models"
mkdir "images"
At this point we want to set up our .env
file, here is a copy for you to use if you wish, Make sure this is in the LocalAI
folder.
## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
THREADS=2
## Specify a different bind address (defaults to ":8080")
# ADDRESS=127.0.0.1:8080
## Define galleries.
## models will to install will be visible in `/models/available`
GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]
## Default path for models
MODELS_PATH=/models
## Enable debug mode
DEBUG=true
## Disables COMPEL (Lets Stable Diffuser work)
COMPEL=0
## Enable/Disable single backend (useful if only one GPU is available)
# SINGLE_ACTIVE_BACKEND=true
## Specify a build type. Available: cublas, openblas, clblas.
BUILD_TYPE=cublas
REBUILD=true
## Enable go tags, available: stablediffusion, tts
## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper
## (requires REBUILD=true)
#
#GO_TAGS=tts
## Path where to store generated images
# IMAGE_PATH=/tmp
## Specify a default upload limit in MB (whisper)
# UPLOAD_LIMIT
# HUGGINGFACEHUB_API_TOKEN=Token here
Now that we have the .env
set lets set up our docker-compose.yaml
file.
It will use a container from quay.io.
Recommened Midori AI - LocalAI Images
lunamidori5/midori_ai_subsystem_localai_cpu:master
For a full list of tags or images please check our docker repo
Base LocalAI Images
master
latest
Core Images - Smaller images without predownload python dependencies
Images with Nvidia accelleration support
If you do not know which version of CUDA do you have available, you can check with
nvidia-smi
ornvcc --version
Recommened Midori AI - LocalAI Images (Only Nvidia works for now)
lunamidori5/midori_ai_subsystem_localai_nvidia_gpu:master
lunamidori5/midori_ai_subsystem_localai_hipblas_gpu:master
lunamidori5/midori_ai_subsystem_localai_intelf16_gpu:master
lunamidori5/midori_ai_subsystem_localai_intelf32_gpu:master
For a full list of tags or images please check our docker repo
Base LocalAI Images
master-cublas-cuda11
master-cublas-cuda11-core
master-cublas-cuda11-ffmpeg
master-cublas-cuda11-ffmpeg-core
Core Images - Smaller images without predownload python dependencies
Images with Nvidia accelleration support
If you do not know which version of CUDA do you have available, you can check with
nvidia-smi
ornvcc --version
Recommened Midori AI - LocalAI Images (Only Nvidia works for now)
lunamidori5/midori_ai_subsystem_localai_nvidia_gpu:master
lunamidori5/midori_ai_subsystem_localai_hipblas_gpu:master
lunamidori5/midori_ai_subsystem_localai_intelf16_gpu:master
lunamidori5/midori_ai_subsystem_localai_intelf32_gpu:master
For a full list of tags or images please check our docker repo
Base LocalAI Images
master-cublas-cuda12
master-cublas-cuda12-core
master-cublas-cuda12-ffmpeg
master-cublas-cuda12-ffmpeg-core
Core Images - Smaller images without predownload python dependencies
Also note this docker-compose.yaml
file is for CPU
only.
version: '3.6'
services:
localai-midori-ai-backend:
image: lunamidori5/midori_ai_subsystem_localai_cpu:master
## use this for localai's base
## image: quay.io/go-skynet/local-ai:master
tty: true # enable colorized logs
restart: always # should this be on-failure ?
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models
- ./images/:/tmp/generated/images/
command: ["/usr/bin/local-ai" ]
Also note this docker-compose.yaml
file is for CUDA
only.
Please change the image to what you need.
version: '3.6'
services:
localai-midori-ai-backend:
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
## use this for localai's base
## image: quay.io/go-skynet/local-ai:CHANGEMETOIMAGENEEDED
image: lunamidori5/midori_ai_subsystem_localai_nvidia_gpu:master
tty: true # enable colorized logs
restart: always # should this be on-failure ?
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models
- ./images/:/tmp/generated/images/
command: ["/usr/bin/local-ai" ]
Make sure to save that in the root of the LocalAI
folder. Then lets spin up the Docker run this in a CMD
or BASH
docker compose up -d --pull always
Now we are going to let that set up, once it is done, lets check to make sure our huggingface / localai galleries are working (wait until you see this screen to do this)
You should see:
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
Now that we got that setup, lets go setup a model